Glikozidaz Enzim Preparatlarının Beyaz Şarap Aromasına Etkisi

Hasan Şener
Ege Üniversitesi, Fen Bilimleri Enstitüsü, Biyoteknoloji Anabilim Dalı, Bornova, İzmir
E-posta: hsnseren@mail.ege.edu.tr

ÖZET

Anahtar Kelimeler: Beyaz şarap, Glikozidaz, β-Glikozidaz, Aroma

INFLUENCE OF GLUCOSIDASE ENZYME PREPARATIONS ON WHITE WINE AROMA

ABSTRACT
The typical aroma of wine is mainly associated with volatile compounds coming from grapes. These compounds are present in grapes and wines as free or bound forms. Aroma compounds in young wines are mostly in their glycosidically bound forms. Aroma compounds such as terpenes, norisoprenoids, benzene derivatives and straight chain alcohols can be released by acid or enzymatic hydrolysis. The enzyme group of glucosidases is used for enzymatic hydrolysis of these compounds. The effect of commercial glucosidase preparations produced from various microbial sources on white wine aroma has been investigated in many studies. The results showed that the enzyme preparations with considerable activity of glucosidase could increase the aroma potential of white wine and improve sensory attributes of wines. Appropriate purification and immobilization procedures must be applied to increase the activity and stability of glucosidases.

Key Words: White wine, Glucosidase, β-Glucosidase, Aroma

GİRİŞ
Aroma bileşikleri şarabın kalitesine katkı sağlayan en önemli bileşiklerdenidir. Taze, içecki ve meyve aromalı şarapların tercih edilebilirliklerinin yüksek olduğu bilinmektedir [1-3]. Şaraptaki bulunan aroma bileşiklerini terpenler, uçur asitler, yüksek alkol ve uçucu fenoller oluşturmaktadır. Aroma bileşiklerinin kaynakları; üzüm kaynaklı çeşitli aromalar, üzümün şarapla işlenmesiyle meydana gelen aromalar, etil alkol ve malolaktik fermentasyon sırasında oluşan aromalar, şarabın olgunlaşması sırasında oluşan (bukeler) aromalarıdır. Çeşit aromaları her üzüm çeşidi için karakteristik olup şarap üretiminde ayrı bir önemine sahiptir. Vitis vinifera L. üzüm çeşidinin karakteristik aromasının terpen bileşiklerinden kaynaklandığı bilinmektedir [4].

Üzüm orijini çeşitli aromaların geliştirilmesi beyaz şarap üretiminin temel ikiyeleri arasında yer almaktadır. Aroma bakımından zayıf veya aromasız çeşitlerden üretilen beyaz şarapların arzalarının artırılması amacıyla yapılan çalışmalar üretimde enzim kullanımı

23
gündeme getirilmiştir [5]. Bu amaçla filamentöz küplerden ve mayalardan üretilen ticari enzim preparatları beyaz şarap üretiminde kullanılmıştır. Bu makalede önemli glikozid aktivitesine sahip ticari enzim preparatlarının beyaz şarap aroma potansiyeli üzerine etkileri derlenmiştir.

AROMA BİLEŞİKLERİİNİN KİMYASAL YAPISİ

Aroma bileşikleri içinde ve şarapta iki farklı yapıda bulunmaktadır. Bunlar üç farklı karakteri ve koku verebilen özellikleri serbest aroma bileşikleri ile kokuusuz, üçmayan karakteri (glikozitler halinde) bağlı aroma bileşikleridir. Serbest form doğrudan aromaya katkı sağladığı gibi formdaki bileşikler şer którym halde bulunmaktadır. Üzümün şarap içlemesi sırasında bu glikozidik yapı korunduğunda genel olarak bulunan aroma bileşiklerinin büyük çoğunluğu bağlı formdadır [6-9].

Şekil 1. Glikozitlerin kimyasal yapısı [10]

AROMA BİLEŞİKLERİİNİN ENZIMATİK HIDROLİZ

Şarapta bulunan bazı aroma bileşikleri asit veya enzimatik hidroliz ile üçç hale gelmekte veya uçucu bileşenler dönenbilen ön maddelere (prekürsör) dönüştüktedir. Asit hidroliz şarapın depolanması ve yillanması sırasında (pH, sıcaklık ve aglikonu bağlı olarak) çok yavaş gerçekleşmektedir [12]. Ayrıca yillardırma sonunda hoş kokulu bazı bileşiklerin (linalol, nerol ve jeranol) daha az kokulu bileşiklere (α-terpineol, diiler, triiler, oksitler vb.) dönüştüğü de bildirilmektedir [16, 17]. Enzimatik hidroliz doğal yoldan aroma artışında kullanılan bir prosedür [2, 18-20].

Aroma bileşiklerinin enzimatik hidrolizi tek aşamalı (diglikozidaz etkisi) veya iki aşamalı (arşişik etki) hidrolizasyon mekanizmaları ile gerçekleştmedir. Her iki mekanizma da ağıklıkların serbest hale gelmesini sağlamaktadır. Tek aşamalı hidrolize diglikozidazların etkisi ile diglikozitlerden ağıklıklar açığa çıkmaktadır, iki aşamalı arşişik etki mekanizmasında ise; ilk olarak α-L-arabinofuranozid (Ara), α-L-ramnopiranozid (Rha)
ve β-D-apiofuranozidad (Api) enzimleri etkisi ile iç glikozit bağları kırılmakta ve ağıkları da içeren β-D-glikozit yapılar ağıza çıkmaktadır. İkinci aşamada β-glikozidad (βG) enzimi etkisi ile ağıklar (R) serbest hale gelmektedir [23]. Serbest hale gelen ağıklar şarap aromasına katkı sağlamaktadır [12]. Glikozidadların ikı aşamali artış etki mekanizması Şekil 3'de verilmiştir.

\[
\begin{align*}
\text{α-L-arabinoz} & \quad \text{β-D-glikoz} \\
\text{α-L-ramnoz} & \quad \text{β-D-glikoz} \\
\text{β-D-apioz} & \quad \text{Şekerler} \\
\end{align*}
\]

Glikozidadların Mikrobiyel Kaynakları

Trichoderma, Penicillium ve Aspergillus cinsleri mikroorganizmaları ait türlerden ekstraküler β-glikozidad enzimleri üretimeke birlikte ticari enzim preparatları genellikle Aspergillus niger kültürlerinden üretilmektedir. A.niger bitkisel prosoonlerde uzun yıllar kullanılır ve GRAS (Genellikle Güvenli Kabul Edilen) koşullarına sahip bir mikroorganizmadır, A.niger’den ede edilen β-glikozidadlar asidik pH’da iyi stabilite göstermekle, isya, yüksek alkoll ve glikoz konsantrasyonlarına dayanıklı özelliklerde olmaktadır [32, 33].

Glikozidadların Saflaştırılması

Beyaz şarap aromasında önemli rol glikozidad aktivitesine sahip ticari pektinaz preparatları kullanılmaktadır. Preparatlar bazı istemeyen enzimatik aktiviteleri (esteraz, antosyanaž, polifenol oksidadı gibi) sahip olabildiğinden önce saflaştırılması gerektiği bildirilmiştir [17]. A.niger’in hazırlanmış Novarom G (Novo Nordisk, Dittingen, Switzerland) yüksek β-glikozidad aktivitesine sahip ticari enzim preparatı olması nedeni ile birçok çalışmada kullanılmaktır. Enzim preparatından (Novarom G) şarap β-glikozidad eldesi aşamaları Şekil 4’te gösterilmiştir. Bu yöntem α-L-arabinofuranozidad (Ara), α-L-rhamnoperanozidad (Rha) ve esteraz (E) gibi yan enzimatik aktiviteleri β-glikozidad (BG) aktivitelerinden izole etmek amacıyla kullanılan basit ve ucuz bir yöntemdir. Ayrıca bu yöntem ile saflaştırılama
kahverengi bileşiklerde ve polisakkaritlerde azalma görüldüğü de bildirilmiştir [37]. Enzim preparatında bulunan diğer enzimatik aktivitelerle bağlı olarak saflaştırımda değişik presipitasyon ve adsorbsiyon konfigürasyonları uygulanabilmektedir [10, 17].

Spagna ve arkadaşları [10] tarafından yapılan bir çalışmada AR 2000 (Gist Brocades, Seclin, France), Rohpect (Rohm, Darmstadt, Germany), Cyclase PCLS (Gist, Brocades, France) ve Enoenzyme (Intec, Verona, Italy) ticari enzim preparatlarından α-L-arabinofuranozidaz ve β-glikozidaz enzimlerinin saflaştırılması yapılmıştır. Saflaştırma prosedür olarak etil alkolde presipitasyon, ultrafiltrasyon, bentonit üzerine adsorbsiyon, KCl ile muamele ve ultrafiltrasyon uygulanmıştır. Saflaştırılan enzimlerin model şarap özelliklerini terpenol bileşikleri önemli düzeyde artırdığı belirlenmiştir (Tablo 1). Fakat serbest haldeki saf enzimlerin stabilitesinin düşük olduğu belirlenmiştir. Çeşitli immobilasyon ve kinyasa modifikasyon teknikleri uygulanarak saf enzimlerin stabilitesinin artırılması gerektiğini bildirilmiştir.

Tablo 1. Saflaştırılmış serbest enzimlerin terpenollere etkisi [19]

<table>
<thead>
<tr>
<th>Aroma bileşikleri</th>
<th>Enzimsi (µg/L)</th>
<th>Enzimi (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linalol</td>
<td>150</td>
<td>340</td>
</tr>
<tr>
<td>α-Terpineol</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Citronelol</td>
<td>15</td>
<td>79</td>
</tr>
<tr>
<td>Nerol</td>
<td>78</td>
<td>180</td>
</tr>
<tr>
<td>Toplam terpenoller</td>
<td>313</td>
<td>968</td>
</tr>
</tbody>
</table>

Glikozidazlarım Immobilasyonu

Immobilasyon aktif olan enzim veya hücrelerin hareketli sivi fazdan fiziksel olarak substrat ve ürün moleküllerinin fazlar arasında yer değiştirilebileceğine şekilde ayrılmıştır. Immobilasyondağı amac glikozidaz enziminin stabilitesini ve kararlılığını artırarak şarap aromasının en iyi şekilde gelişiminin sağlanmasını [38]. Gıda işleme endüstrisinde kullanılan enzimlerin immobilasyonunda alümina ve bentonit gibi inorganik desteklerin yanı sıra selüloz, amın agaroz ve kitosan gibi organik destekler kullanılmaktadır. Özellikle kitosan birçok ticari ürünün immobilasyonunda başarıyla uygulanmaktadır.

Tablo 2. Immobilasyonda kullanılan bazı destek materyalleri [42]

<table>
<thead>
<tr>
<th>Destekler</th>
<th>Enzimler</th>
<th>Aktivite (U/g)</th>
<th>Yarı Ömür (günler)</th>
<th>Optimal pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitosan</td>
<td>BG</td>
<td>30</td>
<td>18</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Ara</td>
<td>50</td>
<td>20</td>
<td>3.5</td>
</tr>
<tr>
<td>Gliserol</td>
<td>BG</td>
<td>220</td>
<td>30</td>
<td>4.0</td>
</tr>
<tr>
<td>Kitosan Jeli</td>
<td>BG</td>
<td>700</td>
<td>50</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Rha</td>
<td>25</td>
<td>50</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Rha</td>
<td>45</td>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>%80 (Rha)</td>
<td></td>
<td>23</td>
<td>5.0</td>
</tr>
</tbody>
</table>

A. niger'den üretilmiş Cyclase PCLS (Genencor, Milano, Italy) enzim preparatının kullanıldığı bir çalışmada ham ve saflaştırılmış enzimler Panaghlina beyaz şarabına uygulanmıştır. Sonuçlara göre kitosan üzerine glutaraldehit ile çapraz bağlanmış safl glikozidazların yüksek geri kazanım oranlarına sahip olduğu belirlenmiştir. Glikozidazların geri kazanım oranları %80 (Rha), %74 (BG) ve %70 (Ara) olarak bulunmuştur. Türk
enzimler Falanghina şarabı koşullarında iyi aktivite ve stabilite (yarı ömür; >110 gün) göstermiştir. Ham enzimatik preparatın ve saflaştırılmış glikozidazların Falanghina beyaz şarabının aroma artırımı için kullanılabilmeği belirtilmiştir [17].

Bir başka çalışmada AR 2000 (Gist Brocades, France) enzim preparatının saflaştırılması Ara, Rha ve βG enzimleri karışımlı immobilized edilerek model şarap çoğaltılmasına uygulanmıştır. Enzimler kitosan jeline glutaraldehit ile çapraz bağlı olarak immobilize edilmiştir. Ayrıca jel yapısının fiziksel ve mekaniksel dayanımını artırmak amacıyla çeşitli ajanlar (lisin, agar, arabik gam, polivinil alkol, jelatin ve silikajel) ilave edilmiştir. Jelatin ve silikajel immobilizasyonu en iyi katkı sağlamakla birlikte yüksek immobilizasyon verimi nedeni ile silika jelin kullanımı tercih edilmiştir. Model şarap çoğaltılmasındaki sonuçlara göre enzim uygulaması terpenol bileşikleri (linalool, jeraniol, nerol, sitronelol) önemli olarak artırılmıştır (Şekil 5). Fakat immobilizasyon uygulaması bu bileşiklerin serbest enzime göre daha düşük seviyelerde kalmamasına neden olmuştur [38].

Şekil 5. Serbest ve immobilize glikozidazların (Ara, Rha ve βG) terpenollerere etkisi [38]

Kovalent bağlanma ile immobilize edilmiş enzimlerin serbest formlarıyla göre seçilme özelliklerinde keskin düşüşler görüldüğü diğer çalışmalarda da bildirilmiştir [42, 43]. Bu durum difüzyon problemleri ve immobilizasyonda kullanılan destek materyallerinin enzim aktivite bölgeleri üzerindeki olumsuz etkileriyle açıklanmaktadır. Fakat jelin üç boyutlu yapısına hapsolmuş enzimlerin yüksek düzeyde serbest halde olması ve düşük moleküler boyutlu substratların bulunması difüzyon problemlerinin düşük seviyelerde olduğu göstermektedir [38].

İmmobilize β-glikozidazların Muscat şarabının aroma kalitesine etkileri dolgulu yatak ve akışkan yatak biyoreaktörler kullanılarak araştırılmıştır. Candida molschiana 35M5N suçu tarafından üretilen β-glikozidazlar Dulotic A568 (Rohm and Haas, France) reçinisi üzerine immobilize edilmiştir. Immobilize enzimlerin aktiviteleri ve stabiliteleri her iki biyoreaktör için benzer sonuçlar vermiştir. Akışkan yatak reaktörde 6 saat 15 dakikalık proses sonunda tamamen hidroliz gerçekleşmekten, dolgulu kolonda 16 saat 40 dakika sonunda %90’lık hidroliz gerçekleşmektedir. Bu çalışma şarap aroma artırımında immobilize β-glikozidazlar kullanılarak yapılan ilk biyoreaktör çalısmasındır. Aroması zayıf şarapların aroma ön Maddelerinin sürekli proseste hidrolizlenmesi beyaz şarap üretimi için önemli bir gelişme olarak belirtilmektedir [45].

Glikozidazların Şarap Üretiminde Kullanımı

Uygulama süresince aroma gelişimi duyusal analizlerle sürekli olarak kontrol edilme tedir. Uygulama sonunda enzimatik aktivite Bentonit (20 g/L) ilavesi ile tamamen bloke edilme tedir [5].

Glikozidazların Beay Şarap Aroma Bileşikleri Üzerine Etkileri

Eksojen fungal glikozidazların şarap aroma bileşikleri üzerine enzimlerin incelediği bir çalışmada, serbest ve bağışlı monoterpen seviyeleri düşük Emir üzmü kullanılarak. Üretim sırasında üzümler iki bölüme ayrılmıştır. İlk bölüm hemen preslenerek fermentasyona alınırken, diğer bölüm 16°Cde 6 saatlık kabuk teması süresine bırakılmıştır. Şaraplara önemli glikozidaz aktivitesi sahip AR 2000 (Gist Brocades, France) tıcarı pektinaz preparatı uygulanmıştır (Apo: 1.08 nkat/mg, βG: 5.7 nkat/mg, Ara: 14.7 nkat/mg ve Rha: 0.3 nkat/mg). Çalışma sonucunda önemli glikozidaz aktivitesi içeren pektinaz preparatının bağlı aroma bileşiklerinin (monoterperler, 13 karbonlu norizoprenoidler ve benzen türevleri) hidrolizini artırıdı tespit edilmiştir.

Toplam terpen bileşik miktarları kontrol şarapta 811 µg/L iken, enzimli şarapta 1307 µg/L'ye ulaşmıştır. Toplam terpen bileşiklerindeki artış %81 olarak bulunurken, terpen bileşikleri içerisinde en yüksek artış jenisol (%120) ve α-terpineolde (%100) tespit edilmiştir. Emir şaraplarında ise terpen bileşiklerinde sadece jenisol miktarında %86 önemli artış görülmüştür. Enzim muamelesi yapılan Misket (%59) ve Emir (%44) şaraplarında glikozidik olarak bağlı terpen bileşikleri seviyeleri önemli derecede azalmıştır. Serbest aroma bileşiklerindeki artış duysal analizde doğrulanmıştır. Enzimli şaraplar kontrole göre daha aromatik karakterli bulunmuş ve daha çok tercih edilmiştir. Enzim uygulamasının Iskenderiye Misketi ve Emir şaraplarının kalitesini ve duysal özelliklerini olumlu yönde etkilediği belirtilmiştir.

AR 2000 (Gist Brocades) enzim preparatının İspanyol Chardonnay, Muscat, Airen ve Macabeo üzmülerinden üretilmiş şarapların çekiş aromalarına etkileri incelemiştir. Çalışmada cibu, mayşe ve şarapta bulunan aromatik bileşikler incelemiştir. Sonuçlara göre tıcarı glikozidaz enzimi kullanımı ve kabuk temasının birlikte etkisi ile tüm şaraplarda çekiş aromasından sorumlu bileşiklerde artış görülmüştür. Özellikle benzil alkol bakımından önemli farklılık tespit edilmiştir. Glikozidaz enzimlerinin Airen ve Macabeo gibi çekiş aromalari zayıf şarapların duysal kalitelerinin gelişirilmesinde kullanılabileceği bildirilmiştir [47].

bildenmiştir. Novarom G enzim preparatının yan enzimatik aktivitelerinin bulunmadığı ve daha fazla safifik içeriği belirlmiştir. Ayrıca enzim preparatları kullanımındanائدileniçerii de bendorsılmaktadır[48].

Yüksek aromatik içerikli Gewürztraminer (Vitis vinifera L.) beyaz şarabında farklı enzim preparatlarının monoterpenler üzerinde etkilerinin incelenildiği bir araştırma yapılmıştır. Çalışma kapsamında, mayafe ve şaraba altı farklı ticari enzim preparatı (Lallyzème-β, Roharin VC, Rohapect D51; Roharin MX; Rohapect VR-C ve Endoyme-Cultivar A) uygulanmış ve daha sonra β- glikozidaz (Fluka, Buchs, Switzerland) ile muamele yapılmıştır. Gewürztraminer üzümlerinde en fazla miktarında bulunan monoterpen bileşikleri jenanol (66,7 μg/L) olarak tespit edilmiştir. Diğer bileşenler ise nerol (13,3 μg/L), α-terpineol (7,8 μg/L) ve lnalool (3,2 μg/L) Lallyzème-β ile muamele edilmiş mayalıenede舆论lent terpen en fazla aromatik karakterde bulunmuştur (nerol 45,9 μg/L; jenanol 31,8 μg/L; α-terpineol 10,5 μg/L ve lnalool 6,1 μg/L). Bu sonuç tanımlayıcı duyusal analiz ile doğrulanmıştır. Enzim ilavesi yapılarak üretimli şarapta birçok monoterpen bileşikinin yüksek seviyelerde olduğu tespit edilmiştir. Fakat bu sonuç duyusal analiz ile desteklenememiştir[2].

Sicilya şaraplarında (Nocera ve Nero d’Avola) β-glikozidaz enzimi (ham ve saflaştırılmış) kullanımının trans resveratrol düzeyine etkileri konulu bir çalışma yapılmıştır. A.niger ve S.cerevisiae kaynaklı β-glikozidaz enzim preparatları (Zyma, Turin, Italy) saflaştırıldığında şarap ve şarapla ilave edilmiş olmaktedir. Önerdilerde trans resveratrol düzeyleri yüksek basınçlı sivi kromatografisi (HPLC) ile tahmin edilmiştir. Sonuçlara göre en düşük antiosyant kaybı A.niger’den saflaştırılmış enzim ile üretilen örneklerde tespit edilmiştir. En yüksek trans resveratrol artışı %75 ile A.niger’den saflaştırılmış enzimle üretilen şaraplarla elde edilmiştir. Bunun yanı sıra şarabın fizikokimyasal özelliklerinde ve bukeden herhangi bir değişiklik görümediği bildirilmiştir. Bu durum şarabın sağlığı ve beslenme açısından daha yararlı hale geldiğini göstermektedir. Ayrıca kaynaklı β-

SONUÇ

KAYNAKLAR

