ÖZET
Organik-üretim naturel zeytinyağı örneklerinde serbest yağ asitli, konjuge dien orani, toplam fenolik madde miktarları ve bulanıklık değerleri ölçülmüş ve bu parametreler 2005 sezoni örnekleri için sırasıyla 3.43, 1.06, 43.87, 0.17 ve 2008 sezoni örnekleri için 0.88, 0.12, 98.58, 26.61 olarak bulunmuştur. Depolama ile naturel zeytinyağındaki serbest asitliğin, konjuge dien miktarları önemli ölçüde artarken, toplam fenolik madde ve bulanıklık değerleri de azalmıştır. Aynı örneklerde depolama ile CIE renk değerlerinden L ve a* değerleri yükselenken b* değeri düşmüştür. Depolanın örnekler 240-270 nm aralığında en yüksek absorbansı vermiştir. Ote yandan ham pirina yağının ve 2. etraksiyon yağında serbest yağ asitili kabul edilebilir değerlerin çok üstündeyken, rafinasyon ile standartların öngörüdüğü seviyeleri indirilebilmiştir. Buna karşın bu örneklerde rafinasyon toplam fenolik madde miktarının önemli ölçüde azalmasına de sebep olmuştur. Benzer şekilde rafine pirina yağılında ölçülen bulanıklık ve a* değerleri de azalmıştır. Pirina yağlarının en yüksek absorbansı gösteren dalga boyu aralığı naturel örneklerden daha geniş olarak belirlenmiştir. Ayrıca 415 ve 670 nm'de gözlenen yüksek absorbans pikleri naturel örneklerde görülmemiştir. Sonuç olarak naturel zeytinyağılarının en fazla üç yıl içinde pazarlanacak şekilde depolanması önerilebilir.

Anahtar Kelimeler: Zeytinyağı, Prina yağları, Konjuge dien, Fenolik madde içerdiği

ABSTRACT
Free fatty acid content, conjugated dienes content, total phenolic content and turbidity measurements of organically produced natural olive oil samples were 3.43, 1.06, 43.87, 0.17 for the samples of the 2005 season and 0.88, 0.12, 98.58, 26.61 for the samples of the 2008 season, respectively. During storage, levels of the free acidity and conjugated dienes of olive oil samples increased while their turbidity value and total phenolic content decreased, As the CIE color values of L and a* increased, b* value decreased during storage. Stored samples had the absorbance maximum between 240 and 270 nm wavelengths. On the other hand, acidity levels in crude olive pomace oil and 2nd extraction oil were very high and reduced to acceptable limits after refining. Contrarily, refining reduced total phenolic content of olive oils significantly. Similarly, refining also reduced turbidity and a* values in the pomace oils. The range for maximum absorbance was wider for pomace oil samples than the virgin olive oils. In addition, absorbance peaks at 415 and 670 nm were absent for virgin olive oil samples. In conclusion, virgin olive oils should not be stored more than 3 years for marketing purposes.

Key Words: Olive oil, Crude olive pomace oil, Conjugated diene, Phenolic content

GİRİŞ
Zeytinyağı, Akdeniz havasında yüzeyden beri üretilen ve adıyla anılan diyet tipinin önemli belirleyicilerinden olan naturel bir yemeklik yağıdır. Zeytin meyvesinden sadece fiziksel işlemlerle üretilen ve dolayısıyla naturel olan bu yağ bileşimi ve duysal özelliklerine de dikkat çekmektedir. Kendine hâl altı özel tat ve aroması, akıllı özellikleri ve renk tonlarıyla özel tüketici grupları olan zeytinyağı, ülkemizin iaş ettii en önemli gıda ürünlerinden biridir. Naturel zeytinyağınlara serbest yağ asidi oranlarına göre
sınıflandırılır. Ayrıca, pirinçdan çözgen ekstraksiyona ve rafinasyon işlemleriyle elde edilen yemekli pirina yağı da artık ticari bir ürün olarak sınıflandırılmış [1].

Zeytinyağıların kalitesini etkileyen faktörlerden en önemlisidir depolama koşulları ve süresidir. Genel olarak natürl zeytinyağı ekşiğe olek asit ve fenolik madde içerdiği nedeniyle oksidasyona oldukça dayanıklı bir üründür. Ancak yine de depolama sıçaklığının yüksek olması, metal bulasanların varlığı, işık kontrolünün yapılması, uygun olmayan kaplarda depolama, ürünün suya teması ve uzun depolama sürenin pourrait oksidasyon ve buna bağlı problemler sıkça gözlenmektedir. Ransel aroma oluşumu, renk kaybı ve metalik ve küfül aromalar en dişetik geçen sorunlardır. Literatürde depo koşulları ve zeytinyağlı kalitesi arasındaki ilişiğin incelenmesi çok sayıda araştırma bulunmaktadır [2-5].

Bu çalışmanın amacı yeni ürün ve farklı süreçlerde depolanmış zeytinyağıların ve ham ve rafine pirina yağılarının bazı kimiyasal ve optik özellikleri karşılaştırmaktır.

MATERİAL VE YÖNTEM

Materyal

Kimiyasal Analizler

Yağ örneklerindeki serbest yağı asidi miktarı; etanolü KOH kullanılarak titrasyon tekniği ile metot Ca 5a-40’a göre yapılmıştır [7]. Konjuge diener asitler, UV Mini Spectrofotometre (Shimadzu Co, Japonya) ile metot Ti 1a-64 göre ölçülmuştur [8]. Toplan fenolik madde maddeleri Folin-Ciocalteu teknigi göre [9] yapılmıştır.

Optik Analizler

Örneklerde kirılma indisi, 20°C’de Abbe 5 (Bellingham&Stanley, İngiltere) refraktometresi ile hıhın saf suya kalibre edilmesinden sonra ölçülmştir. Bulanan ölçümü Micro T100 Laboratuar tipi türbidityometre (HF Scientific Inc, ABĐ) 0,2, 10 ve 100 NTU’ju özel kalibrasyon referans sıvıları kullanılırak, hıhın talmatına göre yapılmıştır. Yağ örneklerinde 200-700 nm arasında absorbsans taraması için, önce örnek 1:10 olarak hezgen ile silyeçilmiş ve daha sonra quartz követle absorbsan taraması, hezgena karşı siltrilmiş spektrofotometre ile yapılmıştır. Örneklerdeki aletler renk değerleri (L, a*, b*), Minolta CR-400 Refaktans kolorimetresi (Osaka, Japonya) kullanılırak yapılmıştır [10].

İstatistik

SONUÇLAR VE TARTIŞMA

Natürel zeytinyağlılarında toplan fenolik maddeler için standartlarda belirli bir değerler bulunmamaktadır. Ancak yapılan çalışmalarında bu maddelerde yağların oksidatif stabilitesi araırda değişkenlik bulunanluluğu ifade edilmedir [9, 14]. Toplan fenolik maddelerin yağın depolamanın süresince azaldığı görülmüştür (Tablo 1). Depolama süresince gerek kimiyasal reaksiyonlar gerekse pro-oksidanlara karşı bağlama etkilerinden dolayı bu maddelerin azalması beklenmektir. Yapılan bir araştırmada 18 aya

Tablo 1. Depolanın naturel zeytinyağlarında ölçülen kinyasal ve fiziksel parametreler*.

<table>
<thead>
<tr>
<th>Üretim Yılı</th>
<th>Serbest yağ asidi (% 0leik asit)</th>
<th>Konjuge dienler (%)</th>
<th>Toplam fenolin madde (mg galilik asit/kg yağ)</th>
<th>Kirılma indisi (20°C de)</th>
<th>Bulanıklık (20°C'de, BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3.43±0.01</td>
<td>1.06±0.01</td>
<td>43.87±0.02</td>
<td>1.470±0.01</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>2007</td>
<td>1.05±0.02</td>
<td>0.18±0.01</td>
<td>51.18±0.02</td>
<td>1.468±0.01</td>
<td>0.34±0.01</td>
</tr>
<tr>
<td>2008</td>
<td>0.88±0.01</td>
<td>0.12±0.01</td>
<td>86.37±0.03</td>
<td>1.485±0.01</td>
<td>0.86±0.01</td>
</tr>
<tr>
<td>2008 (Organik)</td>
<td>0.87±0.01</td>
<td>0.11±0.01</td>
<td>98.58±0.02</td>
<td>1.469±0.01</td>
<td>2.86±0.01</td>
</tr>
</tbody>
</table>

*Aynı sütunda farklı harflerle gösterilen örnekler birbirlerinden LSD testine göre farklıdır (p<0.05).

Farklı sürelerde depolanın naturel zeytinyağı örneklerinde farklı sıcaklıklarda ölçülen aletsel renk değerleri Tablo 2'de gösterilmiştir.

Tablo 2. Depolanın naturel zeytinyağlarında farklı üç sıcaklıkta ölçülen aletsel renk değerleri.

<table>
<thead>
<tr>
<th>Üretim Yılı</th>
<th>-18°C</th>
<th>-20°C</th>
<th>20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>2005</td>
<td>29.4±0.86</td>
<td>3.12±0.05</td>
<td>-1.94±0.05</td>
</tr>
<tr>
<td>2007</td>
<td>62.5±0.61</td>
<td>4.83±0.05</td>
<td>17.17±0.02</td>
</tr>
<tr>
<td>2008</td>
<td>44.79±0.12</td>
<td>4.02±0.14</td>
<td>11.17±0.06</td>
</tr>
<tr>
<td>2008 (Organik)</td>
<td>61.09±1.28</td>
<td>-4.9±0.03</td>
<td>20.96±0.12</td>
</tr>
</tbody>
</table>

*İç range sütunda farklı harflerle gösterilen örnekler birbirlerinden LSD testine göre farklıdır (p<0.05).

Örneklerde ait absorns tarama grafiği Şekil 1'de gösterilmiştir. Hegzan çözgenini karşılı eden taramada genelde zeytinyağın örneklerinin yaklaşık 240-270 nm'de yüksek absorns gösterdikleri belirlenmiştir.

Zeytinyağının depolama süresina artırsyla maksimum absorns aralığının biraz daha genişlediğini gösterilmiştir. Taze örnekler genelde 245-250 nm'de maksimum absorns veriken, depolanın örnekler (2005 üretimi) 245-265 nm'de maksimum absorns değerleri göstermiştir.

Ham ve rafine pirina yağlarında ölçülen analitik parametreler Tablo 3'te gösterilmiştir. Göröldüğü gibi ham pirina yağlarında asitlik çok yüksek olup, yağın rafinasyonu bir zorunluluk halini almıştır. Bazı küçük yağhanedelerde hiç bekletilmemiş taze pirinanın 2nci ekstraksiyon öntemiyile pirina yağı üretilebilir ve naturel zeytinyağında taşımış yapıldığı bilinmektedir [6].
Tablo 3. Ham ve raflı pirina yağlarında ölçülen kimyasal ve fiziksel parametreler.

<table>
<thead>
<tr>
<th>Yağ Türü</th>
<th>Serbest yağ asidi (% oleik asit)</th>
<th>Konjuge dileenler (%)</th>
<th>Toplam fenolik madde (mg galik asit/kg yağ)</th>
<th>Kırılma indisi (20°C'de)</th>
<th>Bulanıklık (20°C'de, BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham Pirina</td>
<td>11.51±0.02^a</td>
<td>0.36±0.01^a</td>
<td>104.15±0.25^c</td>
<td>1.468±0.01^b</td>
<td>47.65±0.06^a</td>
</tr>
<tr>
<td>2. Ekstraksyon</td>
<td>13.55±0.01^a</td>
<td>0.22±0.01^b</td>
<td>127.43±0.31^c</td>
<td>1.468±0.01^b</td>
<td>25.55±0.03^b</td>
</tr>
<tr>
<td>Rafine pirina</td>
<td>0.25±0.02^b</td>
<td>0.29±0.01^b</td>
<td>17.04±0.12^c</td>
<td>1.470±0.01^b</td>
<td>2.75±0.02^c</td>
</tr>
<tr>
<td>Karma pirina</td>
<td>0.32±0.02^b</td>
<td>0.25±0.01^b</td>
<td>14.64±0.09^c</td>
<td>1.469±0.01^b</td>
<td>2.14±0.02^c</td>
</tr>
</tbody>
</table>

*Ayın sütunda farklı harflerle gösterilen örnekler birbirlerinden LSD testine göre farklıdır (p<0.05).

İkinci ekstraksiyon yanının ham yağ olduğu ve kesinlikle raflı edilmesi gerektiğini açıklar. Ekonomik nedenler ve üretime hizmetle tahkim ettiğini, solven entoktraksiyonu yerine ham pirina yağdı bilimsel tekmeleri olarak kabul edebilir. Ancak üretilen yağın mühünca raflı edilmesi gerekmektedir. Farklı pirina yağlarında konjuge dileen miktarları birbirinin istatistiksel olarak çok farklı bulunmuştur. Öte yandan rafinasyon işlemiyle toplam fenolik maddelerin önemli oranda azalmıştır. Benzer şekilde rafinasyon; yağın berrakliğini da arttırmıştır. Ham pirina yağındaki toplam fenolik madde miktarlarının (Tablo 3), natürel zeytinyağılarından (Tablo 1) çok daha yüksek olduğu görülmüştür. Fenolik maddelerin meyvenin kabuk ve et kısımlarına da fazla bulunduğunu ve pirinanın işlenmesi esnasında daha fazla oranda yağlı geçtiği düşünülmektedir.

Üç farklı sıcaklıkta ham ve raflı pirina yağlarında ölçülen alevler rengi değerleri Tablo 4'te gösterilmistir. Ölçüm değerlerindeki sıcaklık bağı değişiminin doğasını natürel yağlarla benzer özellik göstermektedir.

Tablo 4. Farklı ölçüm sıcaklıklarda ham ve raflı pirina yağlarında alevler rengi değerleri.

<table>
<thead>
<tr>
<th>Yağ Türü</th>
<th>Yüzde</th>
<th>-18°C</th>
<th>20°C</th>
<th>70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham Pirina</td>
<td>25.93±1.01^a</td>
<td>3.44±0.23^a</td>
<td>3.44±0.24^a</td>
<td>23.53±0.03^a</td>
</tr>
<tr>
<td>2. Ekstraksyon</td>
<td>39.70±0.20^a</td>
<td>1.77±0.07^a</td>
<td>19.68±0.15^a</td>
<td>31.30±0.44^a</td>
</tr>
<tr>
<td>Rafine pirina</td>
<td>30.07±0.91^a</td>
<td>-1.49±0.06^a</td>
<td>4.71±0.06^a</td>
<td>45.52±0.50^a</td>
</tr>
<tr>
<td>Karma pirina</td>
<td>35.09±0.36^b</td>
<td>-0.92±0.06^b</td>
<td>3.90±0.22^b</td>
<td>50.36±0.06^b</td>
</tr>
</tbody>
</table>

*Ayın sütunda farklı harflerle gösterilen örnekler birbirlerinden LSD testine göre farklıdır (p<0.05).

Oda sıcaklığında ham pirina yağının berraklığı (L değeri) raflı ve karma yağlardan önemli oranda düşük bulunmuştur. Ham yağlardaki yüksek +a* değerleri rafinasyon ile azalmış ve -a* değerleri yükselmistir. Ayın sıcaklıkta rafinasyon örneklerinde b* değeri artmıştır (sarılık yükseltici) etki yapmıştır. Genel olarak yağ rafinasyonun tüm yemeklik yağlarda renk üzerine etkisi bir etki yapmaktadır [13]. Daha önce yapılan bir çalışmadaki 2nci ekstraksiyon yağlı, raflı pirina yağlı ve karma pirina yağında L değerleri sırasıyla 25.52, 53.74 ve 49.93 olarak; a* değerleri 2.86, -3.02 ve 3.34 olarak ve b* değerleri de 2.95, 25.78 ve 24.78 olarak ölçülmüştür [6]. Ölçülen değerlerin birbirine benzer olduğu görülmüştür.

Pirina yağ örneklerinde ölçülen absorbans taraması grafiği Şekil 2'de gösterilmistir. Görüldüğü gibi bu örneklerin absorbans dağılımları ve maksimalı natürel örneklerden (Şekil 1) oldukça farklıdır.

Bunlar hizlan' da ölçülen tarama absorbansından farklı parametrelerdir. Bu taramalar belirli boylarda absorbans değişimleri hakkında bir bilgi sağlamaktadır.

SONUÇ

Natürel zeytinyağılar uygunsuz koşullarda depolanmaları durumunda 3 yüla kadar özelliklerini önemli ölçüde koruyabilmektedir. Ancak depolama süresince kalite özelliklerinde kayıplar olmaktadır. Bu açık manı bakıldığında zeytinyağların üretim sırayında itibaren en fazla 2 yıl içinde tüketilcecek şekilde pazar sunulması önem arz etmektedir. İkinci ekstraksiyon pirina yağı özellikleri itibariyle ham bir yağdır ve kesinlikle natürel yağla taşılaşmış olarak kabul edilebilir. Rafine edildikten sonra 'rafine pirina yağ' veya 'karma pirina yağ' olarak tüketilmesi uygun olabilir. Bu rafine yağlar, yağ asidi içeriği bakımından zeytinyağıyla benzer olduklarından oksidatif dayanımı yüksektir ve ayrıca minör bileşenleri rafinasyonla uzaklaştırıldığından dolayı iyi bir kizartma yağ olabilmeye potansiyeline sahiptirler.

KAYNAKLAR

