Kolesterol Seviyesinin in Vitro ve in Vivo Koşullarda Düşürülmesinde Probiyotik Mikroorganizmaların Etkisi

Oğuz Gürsoy1, Serap Öztürk2, Halil Özbaş3, Ahmet Hilmi Çön2
1 Mehmet Akif Ersoy Üniversitesi, Fen Edebiyat Fakültesi, Biyoloji Bölümü, Burdur
2 Pamukkale Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Denizli
3 İsparta Kadın Doğum ve Çocuk Hastalıkları Hastanesi, İsparta

Geliş Tarihi (Received): 17.02.2011, Kabul Tarihi (Accepted): 01.06.2011
Yazarlardan Sorumlu Yazar (Corresponding author): ogursoy@yahoo.com (O. Gürsoy)
0 248 213 30 57 0 248 213 30 99

ÖZET

Anahtar Kelimeler: Probiyotik, Kolesterol, Kalp-damar hastalıkları, Ateroskleroz, Sağlık

Effect of Probiotic Microorganisms on the in Vitro and in Vivo Reduction of Cholesterol Levels

ABSTRACT
High serum cholesterol levels (>240 mg/dL) increase the risk of cardiovascular diseases. Probiotics are defined as “live microorganisms, which, when administered in adequate amounts, confer a health benefit on the host”, and past in vitro and in vivo studies showed that some strains of probiotic microorganisms are effective in the reduction of cholesterol levels. The present review discusses the effects of probiotic microorganisms on reduction of cholesterol levels in vitro and in vivo.

Key Words: Probiotic, Cholesterol, Cardiovascular diseases, Atherosclerosis, Health

GİRİŞ
olmasının kelo damar hastalıkları riskini %35 ve bu hastalıklardan ölüm riskini de %45 artırdığı bildirilmiştir [4].

Hücre zarının bir bileşeni, steroid hormonların ile safra tuzlarının önçü maddesi olan kolesterolün kimyasal yapısı Şekil 1'de verilmiştir. Yetişkin sağlıklı bir insanın kaşınında 130-200 mg/dl (ortalama ~165 mg/dl) kolesterol bulunmaktadır. 200-239 mg/dl arasındaki kolesterol düzeyleri "sınırda yüksek kan kolesterolü", >240 mg/dl kolesterol ise “yüksek kan kolesterolü” olarak kabul edilmektedir. Kandaki kolesterol; yağcıklarla alınan kolesterol ve vücut tarafından sentezlenen kolesterol olmak üzere iki kaynakta gelmektedir [5]. Vücuta alınan kolesterol lipoprotein partiküller şeklinde taşınmaktadır. Bu lipoproteinlerden kolesterolün karaciğere taşınmasını sağlayan HDL-kolesterol kompleksi "iyi kolesterol" olarak isimlendirmektedir. LDL ise kolesterolü dokuara taşyarak arter ve diğer kan damarlarının duvarlarında birikmesine neden olabildiğinden dolayı LDL-kolesterol kompleksi de "kötü kolesterol" olarak bilinmektedir [2, 5].

PROBİOTİK MIKROORGANIZMALAR İLE SERUM KOLESTEROL DÜZÜMİNİN DÜŞÜRÜLMESİ VE OLASI MEKANİZMALAR

Probıyotik bakterilerin serum kolesterol düzeyini düşürme mekanizmaları tam olarak aydınlatılmamıştır. Ancak günümüzde kadar probiyotik bakterilerin serum kolesterol seviyelerini düşürme mekanizmaları ilgili araştırmaları sıraltan mekanizmaları önemliden [11, 14, 24-26]:

- kolesterolün bakteriler tarafından asimilasyonu,
- kolesterolün bakterinin hücre duvarına tutunması veya hücre zarının yapısına katılması,
Kolesterol Asimilasyonu

Yapılan in vitro çalışmalarda domuzların fakalı florlarından izole edilen farklı Lactobacillus acidophilus suşlarının besiyeri ortamında kolesterol ve safra tuzlarının varlığında indük edilmiş edime edilmesi ve konusunda kullanılarak altı farklı bakteri (i) bakteri suçu, (ii) ortamda safra tuzlarının varlığı ve konsantrasyonu ile (iii) bakterinin ortamındaki çocukların kablo bazlı ve diğer ebeveyn kanalı olarak sıralanabilir.

Probiyotik mikroorganizmaların kolesterol asimilasyonu kablo bazlı suçara anaenqueue farklı faktörlerde göstermektedir. Örneğin Gilliland ve ark. [11] tarafından yapılan bir çalışmadan daha konsantrasyonu kolesterol içeren besiyeri ortamında 9 farklı Lactobacillus acidophilus suşunun kolesterol asimilasyonlarını araştırmış ve bu amaçla kültür mebane sonrası kültür süperantıntaktik ve hücre peletlerindeki kolesterol miktarları belirlenmiştir. Buna göre kültür süperantıntaktik en yüksek seviyede kolesterol azalmış L. acidophilus R43 ve R32 suşlarında (sirasıyla yaklaşık %55 ve %40 azalma) belirlenmiştir. Konu ile ilgili çalışmalarında Walker ve Gilliland [28] 19 farklı Lactobacillus acidophilus suşunun in vitro koşullarda kolesterolü 0 mg/mL (ATCC 4356 ve 14F1 suşları) ila 50 mg/mL (ATCC 43121 suşu) arasında değişen oranlarda asimile edebildiği belirlenmiştir. Buck ve Gilliland [29] 16 grownliden elde edilen toplam 304 değişik üretilmiş 123 tanesi Lactobacillus acidophilus içerdikleri ve bunlar arasında seçilen toplam 17 izolatın kolesterol asimilasyon düzeylerinin farklılık gösterdiğini belirlemiştir.

Araştırmacılar suşların safra tuzlarına direnç kablo bazlı ve kolesterol asimilasyon düzeylerini birlikte değerlendirdiklerinde toplam 5 farklı suş (B7, D3, L1, O16 ve O17) gida katkısı olarak kullanma potansiyelini olduğunu vurgulamışlardır. Bir başka çalışma ise insan başrışka sisteminde izole edilen Lactobacillus, Bifidobacterium, Streptococcus ve Enterococcus cinslerine ait toplam 19 bakteri suşunun kültür ortamında kolesterol asimilasyonu araştırılmış, iki bakteri suçu farklı türden 17 suçu kültür ortamından %0,4 ila %47 arasında değişen oranlarda kolesterolü asimile edebildiği tespit edilmiştir. Çalışma endişe yapan kolesterol asimilasyonu Lactobacillus fermentum KCSb suşu ile (14,8 mg/g hücre kuru ağırlığı) edilmiştir [30]. Mikroorganizmalar tarafından geliştirilen kolesterol asimilasyonunun suçlara bağlı olduğu yapılan benzer çalışmalarla da doğrulanmıştır [13, 31-34].
asimilasyonunun in vivo ortamda da etkili bir şekilde gerçekleştirilmesi ve hücrelerin ortamda toplam kolesterolün %28,6'sını asimile ettiği rapor edilmiştir.

Yapılan bazı çalışmalarla mikroorganizmaların çoğalma evelerinde daha yüksek miktarla kolesterol asimile edebildiği belirtilmiştir [33, 34, 38]. bisc ile benzeri uygulamalarla mikrobiyel kolesterol asimilasyonu tamamen ortamda kalkınmaktadır ancak asimilasyon oranı azalmaktadır [33, 38]. Ormandaki statik durumda bulunan hücrelerle ölçülen hücrelerin kolesterol asimilasyon oranlarının istatistiksel olarak birbirine benzer olduğu belirtilmiştir [34].

Kolesterolün hücre duvarına tutunması veya hücre zarı yapısına katılması

Kolesterolün bakterinin hücre duvarına tutunması veya hücre zarının yapısına katılması ile uzaklaştırılması kan kolesterol seviyelerinin düşürülmesi üzerinde önemli durulan bir diğer mekanizmadır. Kolesterolün bakteri hücre duvarına tutunması veya hücre zarının yapısına katılması sağlar farklılık göstermektedir. Söz konusu farklılıklar bakterilerin hücre duvarının temelini oluşturan peptidoglikan yapının kimyasal ve yapısal farklılıklardan kaynaklanabileceği biliriz [24, 32].

Kolesterolün koprostanolı dönüşümü

Memellerde farklı yollarla (diyet, safra, intestinal hücreler) ince bağışıklık bağışıklığı gelen ve burada bulunan kolesterolün mikrobiyel flora tarafından metabolize edildiği uzn yumuradan beri bilinmektedir [40, 41]. Metabolizasyon işleminde rol oynayan kolesterol redüktaz enzimi kolesterolün koprostanolına kıyasal indirgenmesini katalizleyen enzimdir [42]. Kolesterol redüktazın katalize ettiği söz konusu metabolizasyon işleminin ara ürünleri 4-kolesterol-3-ön ve koprostanon iken [41] behr son grubuz bağışıklar olarak zayıf bir şekilde absorb edilebilen koprostanol in (5β-kolesterol-3β-ol) [40]. Koprostanolun yapısı Şekil 2'de gösterilmiştir.

Şekil 2. Koprostanol (5β-kolesterol-3β-ol)

Yapılan çalışmalarla Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus bulgaricus, Eubacterium coagulatecnes ve Sterlingibacter denitrificans türlerine ait bakteri sugalarının sahip oldukları kolesterol redüktaz enzimi ile kolesterolün koprostanol dönüşümebelirtilmiş [38, 43, 44, 45]. Lye ve ark. [38] farklı laktobasal susunan (L.
**Acidophillus ATCC 314 ve FTCC 0291, L. bulgaricus FTCC 0411 ve FTDC 1311 ve L. casei ATCC 393’

kolesterolün koprostanole dönüşümünü sağlayan hücre içi ve dış kolesterol redüktaz enzim aktivitesine sahip olduğunu belirlemiştir ve ilgili suşların bağırsaklardan kolesterol emilimini azaltarak kan kolesterol seviyelerini düşürebileceğini bildirmiştir. Yapılan bir çalışmada kolesterolü koprostanole indirgeyen *Eubacterium coprostanoigenes* ATCC5122 suşunun kan kolesterol seviyelerini düşürme potansiyeli Yeni Zelanda beyaz taşınınlara artırılmış ve 10 gün boyunca günden 4 mL *Eubacterium coprostanoigenes* süspansiyonu olan taşınınlara kan kolesterol seviyeleri almanın kontrol grubunu göre önemli seviyede (p<0.001) düşük bulunmuştur [44]. *Eubacterium coprostanoigenes* ATCC5122 suşunun 12 fareye ağır yoluyla verildiği benzer bir in vivo araştırıldığında 1 hafta sonra ilgili bakteriyi alan fare grubunun kan kolesterol seviyelerinin kontrol grubundan daha düşük olduğu ve ilgili bakteriyi alan farelerin dikdörtgendeki koprostanol miktarının da arttığı tespit edilmiştir [46]. Kolesterol redüktaz enzime sahip *Eubacterium coprostanoigenes* ATCC5122 ile yapılan bir başka çalışmada ilgili bakteri suşunun kültür olarak kullanıldığı domuz ve koyun etiinden yapılan suç kavgalarında fermentasyon sonunda koprostanol miktarının arttığını belirlemiştir. Araştırmaçlar ilgili mikroorganizmanın suç hamuru ortamında kolesterol redüktaz aktivitesi gösterединliği ve söz konusu mikroorganizmanın suç üretiminde kullanmanın diyetlere ait kan kolesterol miktarının azaltılmasına katkıda bulunabileceği ifade etmişlerdir [47].

Safa tuzlarının dekonjugasyonu

Safa karaciğerde safra kanalıklarında oluşan [48] ve başlıca bileşenleri safra asitleri, kolesterol, fosfolipiter ve biliverdin pigmenti olan sarı-yesil renkte sıvı bir çözeltidir [49, 50]. %97’si su olan karaciğer safrasının bileşiminde ayrıca Ca2+, Na+, K+, HCO3- ve Cl- de bulunmaktadır [51]. Karaciğerde sentezlenen safra, safra kesesi de depolanır, konsantre edilir ve gida alınmadan sonra onkparmak bağırsakına salgılanmaktadır [50]. Karaciğerde çok basamaklı bir yolla kolesterolden sentezlenen birincil (primer) safra asitleri kolik asit ve kenoedoksikolik asit [52]. Kolin bağırsakta bulunan bakteriler 7α-hidroksilaz enzimi ile primer safra asitlerinden bir hidrosol grubu ikincil (sekonder) safra asitlerini (deoksikolik asit ve litokolik asit) oluştururmakta [48]. Safra asitlerinin %50’si koli asit, %30’unu kenoedoksikolik asit, %15’i deoksikolik asit ve %5’i litokolik asit oluştururmakta. Safra asitleri karaciğerde glinin ve taurin ile birleşip konjuva safra asitlerini meydana getirmektedir. Konjugasyon, safra asidinin karboksil grubu ile glinin ya da taurin aminosidinin amino grubu arasında meydana gelen amid bağlı aracılığıyla gerçekleşmektedir (Şekil 3). Birincil safra asitleri glinin veya taurin konjugatları olarak safları girerler. Söz konusu konjugasyon ile hidrofobik steroid çekirdeklerinin çözünürülükleri artar ve konjuva safra asidi molekülleri amfipatik hale gelerek miselerin oluşturduğu için lipitleri çözебilir [49]. Gastrointestinal sistemde bulunan bazı bakteriler konjuva safra asitlerinden glinin ve taurinii ayırabilmekle ve bu sayede dekonjugasyon safra asitleri oluşturabilmektedir [51]. Bu nedenle bağırsaklarda hem konjuva hem de dekonjuge safra asitleri bulunmaktadır. Gastrointestinal kanalda safra asitlerinin tamamına yakını sodyum ve potasyum katyonlarıyla safra tuzlarını oluşturabilmektedir [51].

Safa tuzlarının bağırsakta iki önemli fonksiyonu bulunmaktadır. Safranın birinci fonksiyonu yüzey gerilimi azaltıcı (biyolojik deterjan) özelliği ile lipitlerin emülsiyye edilmesi ve çözünürülmesidir. Bu nedenle safra, yağların sindiriminde önemli bir rol oynamaktadır. Safranın söz konusu deterjan aktivitesi ona bakteriyel membranların ayrıstrılması (erişilmesi) yoluyla ortaya çıkan kuvvetli bir antimikroiyal aktivite de kazandırmaktadır [49]. Safra tuzlarının ikinci önemli fonksiyonu ise lipitlerle miseler oluşturmak ve bu sayede lipitlerin (ve aynı zamanda kolesterol, yağ benzeri yollar ve yağda çözünen vitaminlerin) bağırsak epitelyum hücrelerinden emilimine yardımcı olmaktadır [51].

Kolesterol de dahil olmak üzere yağ sindirimini ince bağırsağından ilk 100 cm’lik kısmında emilirken, birincil ve ikincil safra asitlerinin bağırsaklara salgılanan kısmının %98-99’u ince bağırsık son kısmından emilerek portal dolaşım karaciğere gider dönmektedir (enterohepatik döngü) [52]. Dekonjugü sahra asitlerinin bağırsaktardan tekrar absorb edilerek enterohepatik döngüye katılmaları konjuva safra asitlerine göre daha zor olmaktadır. Bu durum serbest safra asitlerinin büyük miktarlarda dışkı ile atılmasına ve sonuçlanmaktadır. Ayrıca serbest safra asitleri bağırsaklarda lipitlerin emülsiyye edilip çözünürülürülmesi ve emiliminde daha az eklendir. Bundan dolayı safra tuzlarının dekonjugasyonu (i) dışkı ile atılmasına dolaylı hepatik döngü daha az safra asidi katılması nedeniyle karaciğerde kolesterolden safra asidi sentezisin artırılması ve (ii) intestinal boğulma kolesterolin çözünürülüğünü ve dolaysıyla emiliminin azalmasını yollarla serum kolesterol seviyelerinin düşmesine katkıda bulunabilmektedir [49]. Dolaysıyla, probiotikler sahip oldukları safra tuzu hıdroz enzimlerile safra asitlerinin emülsifiyatik dekonjugasyonunu sağlayarak serum kolesterol seviyesinin düşürüldmesine katkıda bulunabilirler [14, 53].
Şekil 3. Konjuge safra asitleri (a) glükokolik asit ve (b) taurokolik asit

Safra tuzu hidrolaz aktivitesinin Lactobacillus, Bifidobacterium, Enterococcus, Clostridium ve Bacteroides türlerine ait çok sayıda suya belirlendiği rapor edilmiştir [13, 15, 49, 54, 55, 56]. Konu ile ilgili çelişikli sonuçlar olma da söz konusu mikroorganizmalar tarafından safra tuzu hidrolaz enzimlerinin salgılanmasının bir detoksifikasyon mekanizması olduğu ve ilgili enzim aktivitesine sahip olan mikroorganizmaların safra tuzlarının hücreler üzerine toksik etkilerini engellemek için safra tuzu hidrolaz enzimlerini salgadıkları sanılmaktadır [55].

Safra tuzu hidrolaz aktivitesi sahip olan suğların belirlenmesi ve bu suğların serum kolesterol seviyeleri üzerindeki etkilerini tespit edilmesi ile ilgili çok sayıda çalışma yapılmıştır ve yapılmaktadır. Örneğin Maharous [15] iki đoàn dışkıdan izole ettiği L. acidophilus (P106 ve P110), L. plantarum (P164) ve L. pentosus (P191) suğlarının safra tuzu hidrolaz enzim aktiviteleri açısından karışıttırılmış ve bütün suğların safra tuzu hidrolaz enzim aktivitesini sahip olduğunun ve suğlar içerisinde L. acidophilus P106’nın en yüksek aktifite gösterdiğini tespit etmiştir. Yapılan benzer bir çalışmada iki đoàn dışkıdan izole edilen Lactobacillus plantarum PH04 suşunun suğa ve asit tolaneli ile safra tuzu hidrolaz aktivitesi test edilmiş ve ilgili bakteri suşunun kolesterol değerine etkisi değerlendirilmiştir. Hücrelerin konjuge safra tuzu bulunur ortamda, safra tuzu hidrolaz aktivitesinin doğrulan fazda logaritmik fazdan 9 kat daha büyük olduğu belirlenmiştir. Öndört gün boyunca 10' kоб L. plantarum PH04 suşu içeren besin öğesi ile beslenen hiperkolesterolik farelerin kontrol grubuna göre serum kolesterol konsantrasyonunda %7'lik bir azalma olduğu saptanmıştır [56]. Başbakan bir arastırımda ise 4 hatta süresince L. acidophilus SNU101 suşu içeren fermentte sü tükerten gönnülürlerde serum kolesterol seviyelerinin önemli düzeyde düştüğü belirlenmiş ve ilgili mikroorganizmanın çok sayıda safra tuzu kolesterol seviyesini düşürücü özelliğinin safra tuzlarının konjuge etkisinde bağlı olduğu ifade edilmiştir [57, 58].

Konu ile ilgili olarak yapılan bazı çalışmalarda mikrobiyal hücrelerden izole edilen safra tuzu hidrolaz enzminin in vivo koşullarda serum kolesterol seviyeleri üzerine etkileri araştırılmıştır. Bu çalışmaların birinde Lactobacillus buchneri ATCC 4005’den izole edildikten sonra immobilize edilen safra tuzu hidrolaz (BSH) enzminin (E.C.3.5.1.24) ağız yoluya alınının şeklinde serum kolesterol seviyelerine etkisi araştırılmıştır [59]. 10 IU/kg ve 20 IU/kg doz immobile enzim ile beslenen çalışanın serum kolesterol seviyelerinde sırasıyla %50 ve %58’lik bir azalma olduğu tespit edilmiştir.

Kısca Zincirli Yağ Asitlerinin Üretimi ve Diğer Olası Mekanizmalar

SONUÇ

Kan kolesterol seviyesinin normal düzeyden her 1 mmol/L daha yüksek olmasıın kalp damar hastalıkları riskini %35 artırdığı bildirilmektedir. Bu nedenle kan kolesterol seviyelerinin normal düzeylerde tutulması ve normal olamanın kan kolesterol seviyelerinin de normal sınırlar içerisinde olması için çok çeşitli çalışmaları yapmaktadır. Genelde kafa kan ş onFailure ve in vivo koşullarda kolesterol seviyelerin düşürüldüğü için de önemlidir potansiyele sahip olduğu ortaya konmuştur.

KAYNAKLAR

